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ELASTIC STRESS SINGULARITY AT
CONICAL INCLUSIONS
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Abstract-The nature of singularities at the vertex of a conical inclusion bonded into a conical
notch is fdund for the problem of axially symmetric stress distribution. The solution is
obtained from an eigenvalue formulation based upon expansions in terms of spherical
harmonics. For certain ranges of elastic constants the singularities are found to be complex
valued.

INTRODUCTION
The strength of singularities at the vertex of conical notches and rigid inclusions in the
axisymmetric state of stress has been recently analyzed by Batant and Keer[ I). The purpose
of this note is to extend their analysis based on spherical harmonics to, the case in which the
inclusion and the matrix are both elastic. The problems involving notches and rigid inclusions
remain limiting cases of the bimaterial one under consideration. However, the stresses in the
neighborhood of the vertex exhibit oscillatory behavior for certain combinations of material
constants in the bimalerial problem.

METHOD OF SOLUTION

Let the region occupied by the material with rigidity modulus 0 1 and Poisson's ratio v, be
referred as Region I. In spherical polar coordinates (R, l/J", l/J), Region I is defined by 0 < R < x,

O:s l/J < f3, O:s l/J" < :'1T. The complement of Region I in the whole space is Region 2 occupied by
the material with rigidity modulus O2 and Poisson's ratio 1'2. Introduce spherical polar
coordinates (R. 0", 0) in Region:' in such a way that the common boundary of the two regions is
the conical surface 0 = 1T - f3, O:s On < :'1T (see Fig. I).

Following Thompson and Little [2], let the displacement vector for Region I be written

u~)(R, l/J) = RA [C1(I - k l - klA )/LPA (~.t) + (I + A)DtPHI(/L)], (I)

u~)(R, l/J) = - RA[(VI - k\C1)P ~+I(/L)+ C t (\ + IqA )PA(/L)] sin l/J (2)

where prime denotes derivative with respect to the argument of the Legendre function and we
have

/L = cos l/J. (3)

The unspecified quantities C" D 1 are independent of the coordinate variables (R, l/J", l/J) but, in
general, they are functions of Poisson ratios and the parameter A. Similarly, the displacement
vector for Region 2 may be written

z

Fig. I. Geometry and coordinate system.
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and
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u~)(R. 0) == RA[Ce( 1~ ke- keA )oPA(o) + (I + AlDePA+,(o)].

u~e)(R. 0) == - RA [(Dc - k2C2)P ~+ 1(0) + Ce(l + heA )PA(0)) sin O.

141

(5)

;) == cos 0 (6)

Except for the continuity conditions on the common boundary of the two regions, no other
conditions on the radial rays will be specified, and so an infinite number of displacement vectors
of the form (1)-(6) are naturally expected to be allowable. However, in a sufficiently small
neighborhood of the apex of the conical boundary, the displacement vector that corresponds to
the smallest real part of the parameter A prevails. Consequently, determination of the smallest
allowable Re(A) is of particular interest, especially when Re(A) < 1 because the stress
components are then unbounded near the apex R == O.

With an obvious notation, the continuity conditions on the common conical boundary of
Regions I and 2 are given by

u~)(R. (3) == u~)(R. 1T - (3).

u~)(R. (3) == -1l~e)(R. 1T - (3).

a!j,J,(R, (3) == a~2J(R, 1T - (3),

a~~(R. (3) == -a~MR. 1T - (3).

(7)

(8)

(9)

( 10)

The stress components corresponding to the displacement vectors (1)-(6) can be easily derived
by means of the stress-displacement relations. Then the continuity conditions (7)-( 10) yield a
set of four linear homogeneous equations in terms of the four unknowns CI, D j , C2 and D2• For
a non-trivial solution of these equations the determinant of the coefficient matrix, say, [A/i)
must vanish. The elements of the matrix may be written

A II (f3, VI, A) == {I- hl(A + l)}fL,'pA(fL,,). (II)

A 21 (f3, VI, A) == (I + k IA)(I - fL ~,)PA (flo) - kJ!,\ + I){PA(flo) - fLOPA +1(fLo I}. (12)

A:\I(f3. VI. A) == kl[{(A + I)e + (A + I) +(1- 2V\)}fLo(l- fL~)PA(fLo)

- 2(1- vl)(A + 1)(1- fL~)PA+I(fLo)

- fLo(A + Ij{PA(fLo) - fLoPA+ I (flo))], (13)

A 41 (f3, VI' A) == k\[{A 2 - 2(1 - VI)}(I - fL ~)PA (flo) +(A + I){- A +2(1 - VI )}{PA(flo)

- fLoPA+ I (flo))], ( 14)

A l if3,v"A)==(I+A)PA+\(fLo). (15)

A 22(f3, VI, A) == (I + A ){PA(flo) - fLoPA+I(fL" I}. (16)

A 3if3. VI. A) == - (A + 1)e(l - fL~)PA+ ,(flo) + fLo(A + I ){PA(flo) - fLoPA+I(fLo)}, (17)

Adf3.vl,A)==A(A+I){PA (fL,,) -fLoPA+J(fLo)}, (18)

and
A Ij(f3, V2, A) == A Ili-21( 1T - f3, V2. A), j == 3.4

A 2j(f3, V2, A) == - A 2(j-2)( 1T - f3, Ve, A), j == 3,4

(19)

(20)

(21)

j == 3.4 (22)

where
flu == cos f3, (23)

The requirement of zero determinant for the matrix [Aid, that is,

(24)t

tThe authors wish to mention that eqn (16) in Ref. [I], which corresponds to eqn (24) here. contains a misprint which may be
corrected by replacing 2(1- v)A' in the last line by 2(1- 2v)x'. Also. the power A of r in eqn (21) should be replaced by - A - I.
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Table I. Singularity Values A for Range of Elastic Constants and Angle f3 (All values of A are real)

Gl/G2 "1 ":l 0.51n 7n/12 2n/3 3n/4 5n/6 11n/12 0.97n

0.1 0.40 0.0 .9973 .9748 .9066 .7508 .6281 .6608 .9133

0.1 0.35 0.0 .9939 .9458 .8568 .7206 .6131 .6540 .9123

0.1 0.30 0.0 .9914 .9261 .8267 .6991 .6012 .6483 .9115

0.1 0.25 0.0 .9894 .9114 .8053 .6826 .5914 .6435 .9108

0.1 0.0 0.50 .9810 .8521 .7179 .5966 .5092 .5450 .8583

0.1 0.25 0.25 .9874 .8962 .7812 .6560 .5604 .5990 .8875

,

0.25 0.25 0.25 .9908 .9234 .8363 .7455 .7007 .8019 .9650

4.00 0.25 0.25 .9785 .8722 .8514 .8962 .9524 .9886 .9986

4.00 0.50 0.0 .9685 .8061 .7459 .7857 .8839 .9711 .9964

4.00 0.0 0.25 .9868 .9225 .9319 .9618 .9841 .9962 .9995

4.00 0.0 0.30 .9883 .9403 .9565 .9806 .9925 .9982 .9998

Table 2. Singularity Values A for Range of Elastic Constants and Angle f3 (A complex for certain range of angle (3)

Gl/G2 VJ. \!;l 0.51n 7,,/12 2n/3 3n/4 5n/6 11n/12 0.97n

0.1 0.50 0.0 1. 0128 I 1. 0857 .9943 .8908 .6741 .6792 .9157

.0057i i .0894i .1556i .0747i .0 .0 .0

4.0 0.0 0.40 .9939 .9690 1. 0002 1.0965 1. 0239 1. 0052 1. 0007

.006li .0544i .1039i .0623i .0 .0 .0

4.0 0.0 0.50 .9914 I .9458 .9533 1. 0532 1.1208 1.0424 1.0064

.013li I .0995i . 186li .2284i .0650i .0 .0

is an eigenvalue problem for A when the Poisson ratios v], V2, the ratio of the shear moduli
G1/G2 and the cone angle 2{3 are prescribed. In the present context, the roots A with Re(A) < I
are the only ones of interest.

NUMERICAL RESULTS

Equation (24) was solved for the eigenvalue, A, for several values of the elastic constants.
The numerical results are presented in Tables I and 2. The angles range from (7T/2) to 7T, where
the first value represents two bonded half spaces (no singularity). The subscript "I" designates
material having a conical cavity of semi vertex angle. 7T-{3, which is bonded to material of
subscript "2" in the form of a cone of semi vertex angle 7T-{3. Table I shows values of the ratio
of shear moduli and combinations of Poisson's ratio such that the singularity values are real. In
Table 2 some values are given in which the singularity exponent will be complex. Cases in
which the singularity value is complex are somewhat limited in range and are seen to depend
upon extreme differences in the elastic constants for matrix and inclusion and also upon the
cone angle.
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